

Lithopone B301, Lithopone B311 powder, brilliant white pigment used in paints, inks, leather, paper, linoleum, and face powder. It was developed in the 1870s as a substitute or supplement for lead carbonate (white lead), to overcome its drawbacks of toxicity, poor weathering, and darkening in atmospheres that contain sulfur compounds. Lithopone B301, Lithopone B311 powder is an insoluble mixture of barium sulfate and zinc sulfide that precipitates upon mixing solutions of barium sulfide and zinc sulfate. The precipitate is recovered by filtration, then calcined (roasted) at temperatures above 600° C (1,112° F). Although Lithopone B301, Lithopone B311 powder has been replaced in many applications by titanium dioxide, it is still widely used in a number of products, such as water paints.
Titanium is one of the most common metals on earth, but it does not occur naturally in this elemental form. TiO2, also known as titanium (IV) oxide or titania, is the naturally occurring compound created when titanium reacts with the oxygen in the air. As an oxide, titanium is found in minerals in the earth’s crust. It is also found with other elements, including calcium and iron.
Pure titanium dioxide is a fine, white powder that provides a bright, white pigment. Titanium dioxide has been used for a century in a range of industrial and consumer products, including paints, coatings, adhesives, paper, plastics and rubber, printing inks, coated fabrics and textiles, as well as ceramics, floor coverings, roofing materials, cosmetics, toothpaste, soap, water treatment agents, pharmaceuticals, food colorants, automotive products, sunscreen and catalysts.
Titanium dioxide comes in the form of a white powder and is sometimes used in cosmetics to adjust a color to a lighter shade. This is also why it can produce a white cast.
To ensure the optimal precipitation percentage, it is important to carefully control these factors during the precipitation process. For example, a higher concentration of titanium sulfate will typically result in a higher precipitation percentage, but may also lead to the formation of impurities. On the other hand, a lower pH of the reaction mixture can promote the precipitation of titanium hydroxide, but may also result in a lower precipitation percentage.
Basic Information:




This article reviews the uses, benefits, and safety of titanium dioxide.